Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

1 Introduction

For this project we were required to design a method for representing 16KHz speech wave-
forms at a rate of 1800 parameters per second. A number of possible methods were considered.
An obvious simple solution would be to lowpass filter the speech signal to meet the 1800 pa-
rameters per second requirement. This would reduce the high frequency content in the speech
but would still retain frequencies below 900Hz which would still provide intelligible speech.
While this would provide a solution, it seems to be a cheap way out.

As a result, we also consider a number of other possibilities. These included adaptive predic-
tive coding, adaptive transform coding, sub-band coding using adaptive bit allocation, sub-band
adaptive predictive coding, and vector quantization. It was at this point that we realized that
we needed to set some design objective in conjunction with picking a compression approach.
Motivated by the generally warm, fuzzy feeling frdomear Predictive CodindLPC) in the
third project, we set the following design goal:

DEVELOP A SPEECH COMPRESSION TECHNIQUE THAT PRODUCES REASONABLY-IN
TELLIGIBLE MALE SPEECH WITH AS FEW PARAMETERS PER SECOND AS POSSI

BLE[S

1we limited ourselves to male speech since all of our training/testing speech was spoken by male speakers.

December 12, 1996 EE-649 — Speech Processing D 1/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

2 Design Process

Throughout this section we use the “sun” sound bite from the first project to help illustrate our
motivation for various design decisions. We resampled the speech signal at 16KHz in order to
ensure an optimal match with the LPC codebook that we assume was trained on 16KHz speech
data. Figure 1 shows the original “sun” signal.

original speech waveform for "sun"
1500 T T T T T T T

1000

500

amplitude

-500

-1000

-1500

_2000 Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800

time in msec

Figure 1: Original speech waveform for “sun”

December 12, 1996 EE-649 — Speech Processing D 2/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

2.1 Vocal Tract

Our first design decision (other than choosing our design goal) found early and unanimous
agreement. We settled on using LPC to model the vocal tract. Furthermore, we restricted
our LPC model to a twenty pole filter characterizing 30 msec speech frames. This restriction
allowed us to take advantage of the previously trailedtor Quantization(\VQ) codebooks
that we used in the third project. At this point the vocal tract model was fixed as VQ on
LPC coefficients of non-overlapping, Hamming windowed, 30 msec speech frames. As in the
third project, we used the Euclidean distance metric on the cepstral coefficients to select the
aprepriate appropriate codeword from the “alimales” VQ codebook.

The remainder of the design process involved modeling the error signal.

2.2 EXxcitation

We model the error signal generated by the LPC vocal tract analysis as the excitation compo-
nent of the speech waveform. We will use “excitation signal” and “error signal” interchange-
ably. A wide variety of excitation models exist in the literature. In this section we will describe
a number of approaches that we considered. We will also describe some of the results for the
ones we actually implemented.

On the extreme ends lie two options. One option is to ignore the excitation and just use the
vocal tract information to reconstruct the signal. We call this appr@achplete ignorance
This approach is appealing in that allows our compression scheme to achieve a parameter rate

December 12, 1996 EE-649 — Speech Processing D 3/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

of just over 33 parameters per second. While the compression rate is extremely good, the
qguality of the speech (as perceived by a human) is rather low. In fact, the output signal is
identically zero. This occurs because the LPC coefficients are weighted by the zeros in the
error signal. At the other extreme is a method to model the excitation with all 1800 per second
of the available model parameters. This could be done in a way similar to was described
above where the compression operation only involved lowpass filtering. Here we model the
excitation signal by lowpass filtering the error signal from the LPC modeling to a rate that
requiresi800 — 34 = 1766 parameters. This results in a sampling rate for the excitation signal
that is just under 900 Hz. While much of the a frequency content is lost, the key component
(the pitch frequency) is retained. Although this approach holds promise for producing high
guality speech, we did not implement it because it would not meet our design goal.

Since thecomplete ignorancapproach aligned more closely with our design goal, we return
to it to try to salvage it by introducing some modifications. With this return come a number
of methods. Methods that we calérious ignorancemoderate ignorangeand a family of
methods labelecdhild ignorance

Serious ignorancénvolves one slight modification to theomplete ignorancenethod. In-
stead of completely ignoring the excitation signal, in this approach we calculate the standard
deviation of the excitation signal over the entire speech segment. This increases the parameter
rate only slightly. Assuming a speech segment of two seconds results in a parameter rate un-
der 34 parameters per second. When reconstructing the signal, we generate white noise with
the calculated standard deviation and use it at the excitation signalm®terate ignorance

December 12, 1996 EE-649 — Speech Processing D 4/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

approach is very similar to this except that we now calculate the standard deviation over each
frame. This results in a parameter rate of 67 parameters per second. Both of these approaches
are founded on the premise that the LPC modeling is a whitening process and the resultant
error signal (which we assume to be our excitation signal) is white noise. While this works
well for unvoiced speech, it does not perform well for voiced speech. Even so, it is interesting

to note that the resultant speech is significantly intelligible. This makes sense because we all
know that whispered speech is significantly intelligible yet contains no voiced speech. In fact,
the reconstructed speech using flaeious ignorancenethod (see Figure 2) and theoderate
ignorancemethod (see Figure 3) do sound much like whispered speech.

December 12, 1996 EE-649 — Speech Processing D 5/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gilrt Chris Taylor and Varun Madhok

output signal for —serious ignorance-
200 T T T T T T T

150 T

100

50

amplitude
o

=100 A

=150 A

-200

1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
time in msec

Figure 2: Output for “sun” usingerious ignorance

December 12, 1996 EE-649 — Speech Processing D 6/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

output signal for -moderate ignorance—
200 T T T T T T T

150 T

100

amplitude

=100 A

-150

1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
time in msec

Figure 3: Output for “sun” usinghoderate ignorance

In both theserious ignorancandmoderate ignorancapproaches we assume that the entire
speech segment is unvoiced. In nearly every case of speech, this assumption is invalid. In
order to improve on the quality of the reconstructed speech we describe a family of speech
compression techniques that do not assume that the entire speech segment to be unvoiced. In
order to remove this assumption we need to perform two tasks — classify each frame as voiced

December 12, 1996 EE-649 — Speech Processing D 7146

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

or unvoiced and estimate the pitch period for voiced frames. A plethora of techniques have been
developed for performing these tagsand many variations can be had on each technique. We
initially drew our ideas from Rabiner et al. (Rabiner et al. 1976).

A comma should not be placed before a conjunction (and/but) un-
less it separates two complete sentences. If the conjunction does
separate two complete sentences, then a comma should be placed
before the conjuction.

Among our pitch detection alternatives were cepstral analysis, autocorrelation methods (cen-
ter clipping prior to autocorrelation calculation (CLIP) and autocorrelation performed on the
LPC error signal (SIFT)), a slightly modified autocorrelation method called Average Magni-
tude Differences Function (AMDF) which subtracts instead of multiplying in the autocorrela-
tion summation, and a parallel processing method based on an elaborate voting scheme. We
immediately dismissed the parallel processing method due to its complexity and little promise
of significantly superior performance. Based on our design objective we proposed to use the
pitch detection algorithm that produced the most perceptually pleasing results. McGonegal
(McGonegal 1977) reported that of these methods, AMDF offered the best results. At this
point it is necessary for us to write a “weaselly” sentence or two to explain why we didn’t ac-
tually do this. The bottom line is that a different group did this and we listened to their results
and found that they weren’t much different from ours using the cepstral analysis method.

While it is true that a number of methods exist for performing pitch detection, we chose to

December 12, 1996 EE-649 — Speech Processing D 8/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

limit our implementational exploration to cepstral techniques. We did so because of the ease of
implementation and intuitive attractiveness. We implemented the cepstral analysis as outlined
in our second project. The cepstral coefficients are then used to determine whether the frame
contains voiced or unvoiced speech. If the speech is determined to be voiced, an estimate of
the pitch period is also obtained. By default our algorithm focuses on the cepstral coefficients
representing the frequency range from 100 to 27(FH2ur algorithm calculates the mean
value of nonnegative coefficients in this range. If the peak value is greater than 1.5 times that
of the mean value, the speech segment is classified as voiced speech and the pitch period is set
based on maximum valued coefficient and is stored as the first excitation modeling parameter.
If the peak value is less than 1.5 times that of the mean value, the speech segment is classified
as unvoiced speech, and the first excitation modeling parameter is set to zero. In either case,
the standard deviation of the excitation signal is calculated and stored as the second excitation
modeling parameter.

This processing results in two model parameters for each frame. While it would be possible
to arbitrarily chose the frame size for the excitation modeling, for simplicity we chose to remain
consistent with the frame length used in the vocal tract modeling, i.e., 30 msec. As a result, we
have three parameters for every 30 msec frame or just under 100 parameters per second.

We reconstruct the excitation signal as follows. For an unvoiced frame the excitation signal
IS white noise with standard deviation equal to the second excitation parameter. For a voiced

2Due to the speaker dependent nature of the cepstral approach to pitch detection, we have included an input parameter to adjust this as needed.

December 12, 1996 EE-649 — Speech Processing D 9/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

frame we generate a periodic signal using the function

an

e, =Ty + mod -y

1 + an?
wherer, is white noise sequence with the same standard deviation as the excitation signal,
a determines the steepness of the slope, amsl the pitch period. This function provides

a periodic excitation signal that retains a white noise component approximating that of the
excitation signal. The vocal tract and excitation information are combined via:

20
Sp = €p — kz bksn—k
=1

wheree,, is the excitation signal anig are the LPC codebook coefficients.

We performed cepstral analysis on the original signal (henceforth referredstossesnild
ignorancg and on the excitation signal (henceforth referred te@aspr mild ignorancg. The
scepmild ignorancemethod provided useful results; however, HuEPmild ignorancemethod
IS unable to detect voiced frames. Unfortunately, we did not have time to fully explore why
this is happening. In any case, the analysis is the same for both methods. The only difference
IS the signal analyzed. Figure 4 presents the sound bite “sun” after processing by the cepstral
analysis on the original signal.

December 12, 1996 EE-649 — Speech Processing D10/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

output signal for SCEP ignorance
2500 T T T T T T T

2000 i

1500

1000

500

amplitude
o

-500

—-1000

—-1500

-2000 N

_2500 Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800

time in msec

Figure 4: Output for “sun” usingCcEeEPmild ignorance

While the plots thus far are instructive, plots of the excitation signal only provide a clearer
view of the excitation signal modeling. These plots are included in Figures 5 — 7 for the original
excitation signal, the excitation modeled byderate ignorangeand scep mild ignorance
respectively. It should be obvious that teeEpP mild ignoranceapproach provides a much
better model for the excitation.

December 12, 1996 EE-649 — Speech Processing D11/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt

Chris Taylor and Varun Madhok

December 12, 1996

error amplitude

400

300

200

100

-100

-200

-300

-400

-500

error signal

T T T T T T T

0

1 1 1 1 1 1 1
100 200 300 400 500 600 700
time in msec

Figure 5: Original excitation for “sun”

EE-649 — Speech Processing

800

D12/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

error signal — moderate ignorance
15 T T T T T T T

error amplitude

-15

1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
time in msec

Figure 6: Excitation for “sun” usinghoderate ignorance

December 12, 1996 EE-649 — Speech Processing D13/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

error signal — SCEP mild ignorance
500 T T T T T T T

400 A

300

200

100

error amplitude

-100

-200

-300

_400 Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800

time in msec

Figure 7: Excitation for “sun” usingCEPmild ignorance

3 Discussion

There exist a large number of reasonable approaches for reaching our design goal. We have
considered a number of them and have actually implemented a subset of that number. Since

December 12, 1996 EE-649 — Speech Processing D14/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

our design goal was founded on intelligibility, we concluded that a quantitative evaluation to
be of little use in assessing our ability to achieve our objective. Instead we relied on subjective
assessments. Our assessments are rather imprecise and are aimed to provide a feel for our
experiences as opposed to a definitive argument for a particular approach. Table 1 contains our
estimates on the percentage of intelligible speech present for each speech signal for the two
methods included in our final program.

There are five approaches that we evaluatedorplete ignorangeserious ignorancemod-
erate ignoranceecePmild ignorance andsceEpPmild ignorance As its name suggestspm-
plete ignorancelid not perform very well. The resulting speech waveform was often unintelli-
gible. Although the standard deviation varied significantly from frame to frame, the difference
between theserious ignorancandmoderate ignorancantelligibility was not as pronounced
as we had expected. Both approaches resulted in reasonably intelligible speech. One implica-
tion of these approaches is the lack of any voiced speech. This resulted in the impression that
processed speech sounded as if it were being whispered. While this was a significant deviation
from the original speech, it did not reduce the intelligibility significantly. It would seem that
at this point we had met our design criteria. These approaches allow us to achieve compres-
sion rates of 34 and 67 parameters per second respectively while still maintaining reasonably
intelligible speech. The twmild ignorancemethods attempted to reduce the “whisper effect”
by including voiced speech frames. These methods increased our parameter burden to 100
parameters per second (still well below the 1800 parameters per second that we were given to
work with). TheecerPmild ignorancemethod failed to identify voiced speech. As a result, the

December 12, 1996 EE-649 — Speech Processing D15/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

output was the same as that of tin@derate ignorancapproach. While thecepmild igno-
ranceapproach was moderately successful in reducing the whisper quality of the speech, there
were a few shortcomings. One significant disadvantage was that the threshold was somewhat
speaker dependent. This shortcoming is most likely due to our choice of pitch detector. The
cepstral pitch detection method is known for it’s thresholding ambiguity, and it may be that
we could elevate this problem by selecting a different pitch detection method like the AMDF.
This could be done with a simple modification and the general compression framework would
remain the same. Another disadvantage is that the transitions between voiced and unvoiced oc-
casionally produces an audible artifact. It may be possible to incorporate some sort of transition
smoothing to eliminate this; however, we did not explore this option.

U

scepmild ignorance Moderate ignorance
Sentence Speaker number | Speaker number
number| 1 2 3 1 2 3

1 80% | 60% 50%| 70% 20%, 20%
2 60% | 70% 70%| 30%| 50%| 30%
3 70%|40%| 100% 20%|20%| 30%
4 70% | 60% 90%| 40%| 20%| 20%
5

80% | 80% 90% 40% 10%| 20%
Table 1: Percentage of intelligible speech

Our project guidelines made it clear that we were to not concern ourselves with the number
of bits required to represent the speech; however, it may be of interest to note that our approach

December 12, 1996 EE-649 — Speech Processing D16/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

can be easily modified to squeeze the most information out of each bit as possible. We chose to
use a 10 bit codebook for the LPC coefficients, but we certainly could have reduced this without
much loss of intelligibility. A 6 bit codebook should suffice. As we saw in the comparison
between theserious ignoranceand moderate ignorancapproaches, the standard deviation
estimate is not very sensitive. For the sake of discussion we will assume that we can quantize
this estimate to 4 bits. The remaining parameter contains information on the pitch period.
We also use this parameter to indicate whether the speech frame contains voiced or unvoiced
data. This is done by setting the pitch period equal to zero if the frame contains an unvoiced
speech segment. This approach allows us to reserve one quantization level of the pitch period
parameter as a flag for unvoiced speech. Because of the narrow range of possible pitch periods,
we hypothesize that we can quantize this parameter to 4 bits. Table 2 indicates the parameter
and bit rates using these quantization levels for the various approaches that we implemented.

Compression technigué’arameters per seconilit per second
complete ignorance 33.3 200
serious ignorance 33.3+1 200 + 4
moderate ignorance 66.6 667
ECEPmiIld ignorance 99.9 1400
scePmild ignorance 99.9 1400

Table 2: Compression rates

All of these bit rates could be reduced further by additional coding techniques. For example,
the mild ignorancetechniques could make good use of Huffman coding. It should be evident

December 12, 1996 EE-649 — Speech Processing D17/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

from Figure 7 that the voiced/unvoiced decision remains consistent for a few frames at a time.
As a result, all neighboring unvoiced frames will share the same value for their pitch period
parameter. If we store the LPC codebook parameter for all the frames first, then the pitch
period parameter for all of the frames next, and then the standard deviation parameter last,
the sequence of pitch period parameters should compress significantly whenever a sequence of
unvoiced frames appear consecutively.

4 Additional Notes

The entire project was programmed in ‘C’ and the source code is attached at the end of this
report. Also, the last page of the report (after the source code) is the “Project 4S Information
Sheet.” Our executable code allows two modes of operation. The default mode processes
using thescepmild ignorancemethod. Using the-N flag will cause the program to process

the speech data using theoderate ignorancenethod instead. Please refer to the manpage
included just prior to the source code, refer to the README file, or run the program with the
-help option for more information on the command syntax. All of the files for our project
can be found infhome/offset/a/taylor/SpeechStuff . Some files exist in each
directory and the others are symbolically linked. Our program generates ascii speech files. In
order to listen to the output converted it to binary speech files and then used a package called
“sox” to convert the file to a Sun AU file, and used “audioplay” on the Suns and “sendd”

on the HPs to listen to the output.

December 12, 1996 EE-649 — Speech Processing D18/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt Chris Taylor and Varun Madhok

5 Bibliography

e L.R. Rabiner, M.J. Cheng, A.E. Rosenberg, and C.A. McGonegal, “A Comparative Per-
formance Study of Several Pitch Detection Algorithm&EE Transactions on Acoustics,
Speech, and Signal Processinvgl. ASSP-24, no. 5, pp. 399-418, 1976.

e C.A. McGonegal, “A Subjective Evaluation of Pitch Detection Methods Using LPC Syn-
thesized SpeechJEEE Transactions on Acoustics, Speech, and Signal Procesanhg
ASSP-25, no. 6, 1977.

6 Source Files

6.1 hw4.h
2 Authors: Varun Madhok and Chris Taylor
3 Date: December 6, 1996
4 File: hw4 . h
5 Purpose: This header file contains the function prototypes for the
6 speech compression application that was part of our
7 fourth homework assignment for EE649— Speech Processing
8
9 Notes: The following subroutines have been copied (mostly) from the
10 text "Numerical Recipes in C’ by Press, Teukolsky, Flannery
11 and Vetterling. The source code however has not been submitted.
12
13 (float x)vector . allocates memory for a floating point array;
14 (double x) dvector : allocates memory for an array with double elements;
15 (double x)c_dvector : allocates memory for an array with double elements
16 with initialization to zero;

December 12, 1996 EE-649 — Speech Processing |:|19/46

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt

Chris Taylor and Varun Madhok

(int %) ivector : allocates memory for an array with integer elements;
void free_vector . frees memory allocated for a floating point array;
void free_ivector . frees memory allocated for an integer point array;
void free_dvector . frees memory allocated for a double point array;
void dfourl . carries out FFT on input array. Original array is

replaced by the FFT thereof. To work with complex
data, the convention used is to assign all real

values to the even indices and the imaginary components

to the odd indices of the array (assuming first index

is zero);
void normal : white noise generation subroutine with mean 0 and
variance 1.
>I<>I<>I<>I<>I<>I<>|<>|<>|<>|<>|<>|<****************>f<>i<>|<>|<>|<>i<>i<>I<>k**>I<>I<>I<>I<>|<***********************/

/« Definitions for constants in our simple program. If this were more

than an experimental application, these constants should be parameters

whose values could be selected at runtimel
#define DEF_DAT 7680
#define SEGMENT_LENGTH 480
#define IN_DEF_FILE ”"sun.ascii.zZ”
#define OUT_DEF_FILE ”out.temp”
#define CODE_DEF_DIR "male”
#define DEF_CODEBK_SIZE 2

#if defined(..STDC__) || defined(ANSI) || defined (NRANSI)

[+ fftmag: Calculates the magnitude of an n sample signal s and stores
the result in magx/

[« fftmag: Calculates the n point FFT of s and stores the magnitude
of the result in mag.
Notes: n must be a power of two with a= 1024

mag stores the magnitude, not the log magnitudé
int fftmag (double s[], double mag[], int n);

/+* hamm: Calculates the Hamming windowed version of an n sample signal
and stores the result in hs (uses float precision/)
void hamm(float s[], float hs[], int n);

/* dhamm: Calculates the Hamming windowed version of an n sample signal
and stores the result in hs (uses double precision/)

December 12, 1996 EE-649 — Speech Processing

S

S

D20/46

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

void dhamm(double s[], double hs[], int n);

[/« lpc: Calculates p Linear Predictive Coding coefficients
b[1], ..., b[p]; (b[0] = 1.0) The LPC coefficients approximate
the signal x[].
Convention used: signs of the b[k]'s are such that the denominator
of the transfer function is of the form
1+(sum from k=1 to p of b[k}zxx(—k))
This is the normal convention for the inverse filtering formulation
errn = normalized minimum error
rmse = root mean square energy of the x[i]'s
n number of data points in frame
p number of coefficients = degree of inverse filter polynomial,
p <= 40 %/
int Ipc(float x[], int n, int p, float bJ[], float *rmse, float =xerrn);

I+ voiced.error.gen: Generates a selpn length voiced error signal,
segment, which is a sequence of pulses (with a
period of pitchperiod/2) corresponding to the
excitation signal for voiced speech is generated
using the function f(x) = ax/(1+&xx*xx). A constant
multiplicative factor based on the standard deviation
measured over the actual error signal is used to
modulate the signal to the appropriate amplitude.
White gaussian noise with a standard deviation of
err_stdev is addedx/

void voiced_error_gen(float *segment, int seg_len, float err_stdev,
int pitch_period);

/* unvoicederror.gen: Generates a seken length unvoiced error signal,
segment, which is just white noise with a standard
deviation of errstdev x/

void unvoiced_error_gen(float +«segment, int seg_len, float err_stdev)

/x code.select: Selects the appropriate codebook.
xxreal_cep: This is the array of cepstral coefficients generated
by the frame over the entire speech signal.

xkcode.cep: This contains the codebook for the cepstral coefficients.

xxcode.lpc: This contains the codebook for the LPC coefficients.

December 12, 1996 EE-649 — Speech Processing

|:|21/46

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

© 00N O WN P

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

xxcodeword: Once the best match between the input word and that

from the codebook (cepstral) is found, the corresponding
word from the LPC codebook is transferred to ’'codebook’

as the output to be used in speech generatiot.

void code_select(float =x«xreal_cep, float *xcode_cep, float x«xcode_lpc, float *xcodeword,

int seg_.num, int num_codes, int filter_order);

/[« wr_error: If n is zero it prints and error and exists
otherwise, it prints an okay message and continue/s
void wr_error(int n);

/[« print_directions: Displays usage instructions/

void print_directions ();
#else

void hamm();

void dhamm();

int fftmag ();

int lpc();

void voiced_error_gen();

void unvoiced_error_gen();

void code_select();

void wr_error(int n);

void print_directions ();
#endif

6.2 hwéd.c

/**

Authors: Varun Madhok and Chris Taylor

Date : December 6, 1996

File: hw4 . c

Purpose: This file contains the main application for the speech compression
application that was part of our fourth homework assignment for
EE649 —— Speech Processing

3K sk sk sk sk sk sk sk sk Sk Kk sk sk sk 3Kk sk sk sk sk sk Kk 3k sk sk sk sk sk sk sk sk sk sk sk K sk Kok Kok k[
#include <stdio.h>

#include <math.h>
#include "Ihome/ offset/a/taylor/Src/Recipes/recipes/nrutil .h”

December 12, 1996 EE-649 — Speech Processing

|:|22/46

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

#include "Ihome/ offset/a/taylor/Src/Recipes/recipes/nr.h”
#include "Ihome/ offset/a/taylor/Src/Recipes/Vrecipes/randlib.h”
#include "hw4.h”

#define MODFACTOR 1.5

#define OTHER O

#define MALE 1

#define FEMALE 2

#define CHILD 3

int main(int argc, char =xargv[])

t |
int i;
int i
int k;
int N_flag;
int pole;
int itemp;
int num;
int seg_len;
int seg-num;
int filter_order;
int data;
int pad_location;
int ID;
int sampling_rate;
int lifter_from_this_sample;
int lifter_till_this_sample;
float ftemp;
float rmse;
float errn;

float * filter_coeffs;
float x ceps_coeffs;

float e;

float * gen_e;
float err_stdev;
float err_mean;

float * segment;
float + windowed_segment;
int non_zero_count;

December 12, 1996 EE-649 — Speech Processing

D23/46

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

77
78
79
80
81
82

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab

g%rt Chris Taylor and Varun Madhok

int max_index ;

int pitch_period;
int num_codes;

int category._is;

/+ long_.segment is of length 1024 samples. It comprises the windowed segment
in the centre padded left and right by an appropriate number

double x long_segment;

double x fft_segment;

double non_zero_sum;

double max_samp ;

FILE x infile;

FILE « errfile;

FILE % gen_errfile;

FILE x cepsfile;

FILE x Ipcfile;

float * gen_err;

float *x real_cep;

float *+ code_cep;

float *+ code_lpc;

float «x codeword;

float =« error_signal;

float =+ output_signal;

char fname [55];
char out_fname [55];
char temp_str[90];

Your main function is over 400 lines long. You really should split
this into a number of shorter functions. Doing so would allow you
to more easily test, modify, and maintain your code.

char num_codes_string [8];
char code_fname[15];
char group_name [5];
char CODEBOOKS EXIST;
if ((argc > 1) && (!strcmp (argv [1], "—help”))) {
December 12, 1996 EE-649 — Speech Processing

|:|24/46

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

print_directions ();
}
/«the default values are assigned hete
strcpy (fname, IN_DEF_FILE);
strcpy (out_fname, OUT_DEF_FILE);
strcpy (code_fname, CODE_DEF.DIR);
N_flag=1;
pole=0;
num_codes=DEF_CODEBK_SIZE;
strcpy (num_codes_string, "2");
num=DEF_DAT;
filter_order= 20;
seg_len=SEGMENT_LENGTH;
category_is=0THER;
ID=0;
CODEBOOKS EXIST=1;
sampling_rate=16000;
/«The for loop below works in the command line arguments
for (i=1;i<argc;i++) {
if (!'strcmp(argv[i],”—in")) {
strcpy (fname, argv[l+i]);
} else if (!strecmp(argv[i],”—out”)) {
strcpy (out_fname, argv[l+i]);
} else if (!strcmp(argv[i],”—code”)) {
strcpy (code_fname, argv[l+i]);
} else if (!stremp(argv[il],”+P")) {

pole=1;
} else if (Istrcmp(argv[i],”+N")) {
N _flag=0;

} else if (!strcmp(argv[i],"—ID")) {
sscanf(argv[i+1], "%d”, &ID);

} else if (!strcmp(argv[i],”—bksize”)) {

sscanf(argv[i+1], "%d”, &num_codes);

strcpy (num_codes_string, argv[l+i]);

} else if (!strecmp(argv[i],”—num”)) {
sscanf(argv[i+1], "%d”, &num);

} else if (!strcmp(argv[i],"—segl”)) {
sscanf(argv[i+1], "%d”, &seg_len);

} else if (!strcmp(argv[i],”—samp”)) {

December 12, 1996 EE-649 — Speech Processing

into the program

D25/46

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

sscanf(argv[i+1], "%d”, &sampling_rate);
} else if (!strcmp(argv[i],”—group”)) {
strcpy (group_name, argv[l+i]);
if ((!strncmp(group_.name, "m”, 1))||(!strncmp(group_.name, "M", 1))) {
category_is=MALE;
} else if ((!strncmp(group_name, "f”, 1))]||(!strncmp(group_name, "F", 1))) {
category_is=FEMALE;
} else if ((!strncmp(group-name,
}
}

iy 1)) (!strncmp(group-name, "J", 1))) {
category_is=CHILD;

else {

category_is=0OTHER;

}
}
if (pole) {
strcpy (temp_str,”zcat.”);
strcat (temp_str, fname);
if ((infile=popen(temp_str, "r”))==NULL) {
wr_error (0);
¥

} else {
strcpy (temp_str, fname);
if ((infile=fopen(temp_str, "r”))==NULL) {
wr_error (0);
}

}

strcpy (temp_str, "/home/purcell/c/ee649/Data/p3/codebooks/");

strcat (temp_str, code_fname);

strcat (temp_str, "/cepstral/codebook.”);

strcat(temp_str, num_codes_string);

if ((cepsfile=fopen (temp_str, "r”))==NULL) {

CODEBOOKS _EXIST=0;

}

if (CODEBOOKS_EXIST) /«If the codebooks are found in the right location
the program proceeds as normal otherwise output
files corresponding to the actual excitation
signal and the generated excitation are created

December 12, 1996 EE-649 — Speech Processing

D26/46

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab

e

Chris Taylor and Varun Madhok

strcpy (temp_str, "/home/purcell/c/ee649/Data/p3/codebooks/");
strcat (temp_str, code_fname);
strcat (temp_str, "/lpc/codebook.”);
strcat (temp_str, num_codes_string);
strcat (temp_str, ".lpc”");
if ((Ipcfile=fopen (temp_str, "r”))==NULL) {
CODEBOOKS _EXIST=0;
}
}
if (CODEBOOKS_EXIST==0) {
strcpy (temp_str, out_fname);
strcat (temp_str, ".err”);
if ((errfile=fopen (temp_.str, "w”))==NULL) {
wr_error (0);
}
strcpy (temp_str, out_fname);
strcat (temp_str, ".gen”);
if ((gen_errfile=fopen (temp_str, "w”))==NULL) {
wr_error (0);
¥
readseed ();
/* This setup determines the range to be left as mra®ro in the
liftering of the cepstrum. The range varies by gender and agé.
switch (category_is) {
case MALE :
lifter_from_this_sample=(int)((float)sampling_rate/200.0);/«200 Hz is used as
lifter_till_this_sample=(int)((float)sampling_rate/100.0);/«100 Hz is used as
break ;
case FEMALE :
lifter_from_this_sample=(int)((float)sampling_rate/275.0);
lifter_till_this_sample=(int)((float)sampling_rate/180.0);
break ;
case CHILD :
lifter_from_this_sample=(int)((float)sampling_.rate/285.0);
lifter_till_this_sample=(int)((float)sampling_rate/180.0);
break ;
default
lifter_from_this_sample=(int)((float)sampling_rate/270.0);
December 12, 1996 EE-649 — Speech Processing

upper
lower

lim it/
limit/

D27/46

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

lifter_till_this_sample=(int)((float)sampling_rate/100.0);
break ;
}
data=(int «)ivector (0, num-—1);
error_signal=(float «)vector (1, num);
/xreading data and calculating meah
ftemp=0.0;
1=0;
while (j<num) {
fscanf(infile ,"%d”, &itemp);
data[j]=itemp;
jt++;
}
if (pole) {
pclose(infile);
} else {
fclose (infile);
}
seg_.num=num/seg_len; /«number of segments in the speech fiik
segment=(float *)vector (0, seg_len—-1);
windowed_segment=(float x)vector (0, seg_len—1);
long_segment=(double x)dvector (0, (2x1024)—-1);
fft_segment=(double x)dvector(0, 1024-1);
filter_coeffs=(float *) vector (0, filter_order);
ceps_coeffs=(float *) vector (1, filter_order);
/«e=(float x)c_vector (0, seglen—1);x/
gen_e=(float «)c_vector (0, seg_len—1);
real_cep=(float *x)matrix (1, seg.num, 1, filter_order);
pad_location=(1024—seg_len)/2;
for (k=1; k<=seg_num; k++) {
for (j=0; j<seg_len; j++){
if (((k—1)xseg_len+j)<num) {
segment[j]=(float) data[(k—1)xseg_len+j];
} else {
segment[j]=0.0;
}
December 12, 1996 EE-649 — Speech Processing

D28/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt Chris Taylor and Varun Madhok

239 hamm(segment, windowed_segment, seg_len);

240 /[« At this stage calculate the pitch period of the input signal
241 thereby classifying segment as voiced/unvoicéd

242 [+ Step | — pad windowed segment from the left and rig#hit
243 for (j=pad_location; j<(pad_location+seg_len); j++) {

244 long_segment[2x j]=(double)windowed_segment[j—pad_location];
245 long_segment[2xj+1]=0.0;

246 }

247 [+ Left padx/

248 for (j=(pad_location—-1); j>=0; j—=) {

249 if (((k—=1)xseg_len+j—pad_location)>=0) {

250 long_segment[2xj]=0.0/«(double) data[(k1l)xseglen+j—pad.location]«/;
251 } else {

252 long_segment[2xj]=0.0;

253 }

254 long_segment[2xj+1]=0.0;

255 }

256 [+ Right padx/

257 for (j=(pad_location+seg_len+1); j<1024; j++) {

258 if (((k—=1)xseg_len+j)<num) {

259 long_segment[2xj]=0.0;

260 } else {

261 long_segment[2xj]=0.0;

262 }

263 long_segment[2%]+1]=0.0;

264 }

265 I+ Step Il— calculate Fourier Transform/

266 dfourl(long_segment—1, 1024, 1);

267 /[« Step Ill— calculate IDFT of log (x/

268 for (j=0; j<1024; j++) {

269 fft_segment[j]=log(sqrt(long_.segment[2xj]«xlong_segment[2x]+
270 long_segment[2xj+1]xlong_segment[2x*|+1]));
271 }

272 [+ Step IV — Lifter operationx/

273 for (j=0; j<1024; j++) {

274 long_segment[2xj]=fft_segment[j];

275 long_segment[2xj+1]=0.0;

276

277 /+* Inverse FFT of the log fftsegment is the cepstrusi

December 12, 1996 EE-649 — Speech Processing [or4e

278
279
280
281
282
283
284
285
286
287
288
289
290
201
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt

Chris Taylor and Varun Madhok

dfourl(long_segment—1, 1024, —1);
max_samp=0.0;

non_zero_count=0;
non_zero_.sum=0.0;

it ((k==ID)[[(ID==0)) {

[« Liftering is done so that the maxima corresponding to the
pitch is accentuated (if it exists«y

for (j=0; j<(1024/2); j++) {
if ((j>lifter_till_.this_sample)||(j<lifter_from_this_sample)) {
long_segment[2xj]=0.0;

}
I/« The location of the maximum is found and the value coresponding
to the max is stored/
if (long_segment[2xj]>max_samp) {
max_samp=long_segment[2x]];
max_index=j ;
}
if ((long_segment[2x]j]>=0.0)&&(j<=lifter_till_this_sample)&&
(j>=lifter_from_this_sample)) {
non_zero_count++;
non_zero_sum+=fabs (long_segment[2x]]);
}

}

non_zero_sum/=non_zero_count;

I/« Pitch detection is done here : If the max value is greater than the
average nonnegative signal over the liftered signal, we claim a
pitch to have been detected

if ((max_samp>(MOD_FACTORx«non_zero_sum))&&(N_flag!=0)) {
pitch_period=max_index;

} else {
pitch_period=-1;

¥

Ipc (windowed_segment, seg_len, filter_order, filter_coeffs, &rmse, &errn);

I/« Calculate erro+—>Initializationx/

for (j=0;j<seg-len; j++) {
gen_e[j]=0.0;

err_stdev=err_mean=0.0;

for (j=0;j<seg_len; j++) {

December 12, 1996 EE-649 — Speech Processing

D30/46

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gﬁlrt

Chris Taylor and Varun Madhok

e=0.0;
for (i=0; i<=filter_order; i++) {
if (k==1) {
it ((j—i)>=0) {

e+=filter_coeffs[i]xsegment[j—i];

}
} else {

et=filter_coeffs[i]x(float)data[(k—1)xseg_len+j—i];

}

}
if (!CODEBOOKSEXIST) {

fprintf(errfile, "%f\n", e);

}

err_mean+=e;

err_stdev+=exe;
¥
err_mean/=(float)(seg_len);
err_stdev/=(float)(seg_len);
err_stdev—=(err_meansxerr_mean);
if (err_stdev>0.0) {

err_stdev=sqrt(err_stdev);

} else {
err_stdev=0.0;
}
/+ At this stage ... use the voiced

unvoiced decision

plus standard deviation of the error signal to generate

an 'error’ signal.
To recap— Parameters used are

a. (optional) Voiced/unvoiced flag : 0 if unvoiced, 1 if otherwise;
b. standard deviation of the error for the frame;

c. pitch period :—1 if unvoiced,

/+ An excitation signal is generated as and how we have classified the frame

if (pitch_period>0) {

something +ve if voiced %/

voiced_error_gen(gen_e, seg_len, err_stdev, pitch_period);

} else {
unvoiced_error_gen(gen_e, seg_len,

}

for (j=0; j<seg_len; j++){

December 12, 1996

err_stdev);

EE-649 — Speech Processing

D31/46

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

error_signal [(k—1)xseg_len +j] = gen_e[]j];
if (!CODEBOOKS_EXIST) {
fprintf(gen_errfile, "%f\n", gen_e[j]);
}
}

for (i=1; i<=filter_order; i++) {
ceps_coeffs[i]=—filter_coeffs[i];
ftemp=0.0;
for (j=1; j<=(i—-1); j++) {

ftemp—=(float)j * ceps_coeffs[j]«filter_coeffs[i—j];

¥
ceps_coeffs[i]+=(ftemp/(float)i);
real_cep[k][i]=ceps_coeffs[i];

}

} /'« End of k loop—> new segment begins«/

if (CODEBOOKS_EXIST) {
codeword=(float *x)matrix (1, seg.num, 1, filter_order);
code_Ipc=(float *x*)matrix (1, num_codes, 1, filter_order); /«read codebook LP&/
code_cep=(float «xx)matrix (1, num_codes, 1, filter_order); /«xread codebook CERS
}
/[« Freeing memoryx/
free_ivector(data, 0, num—1);
free_vector(gen_e, 0, seg_len-1);
free_vector (windowed_segment, 0, seg_len—1);
free_dvector (long_segment, 0, (2x1024)—1);
free_dvector (fft_.segment, 0, 1024-1);
free_vector (segment, 0, seg_len-1);
free_vector (filter_coeffs, 0, filter_order);
free_vector(ceps_coeffs, 1, filter_order);

if (CODEBOOKS.EXIST) {
for (i=1; i<=num_codes; i++) {
for (j=1; j<=filter_order; j++) {
fscanf(cepsfile,"%f", &ftemp);
code_cep[i][j]=ftemp;
fscanf(Ipcfile ,"%f”, &ftemp);

December 12, 1996 EE-649 — Speech Processing

D32/46

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gélrt Chris Taylor and Varun Madhok

code_lpc[i][]j]=ftemp;
}
¥
[/« At this stage ... have frame by frame data on cepstral coefficients
have codebooks on Ipc and cepstral coeffs.
Proceed with the association
Output is stored in codeword/
code_select(real_cep, code_cep, code_lpc, codeword, seg.num, num_codes, filter_order);
free_matrix (code_cep, 1, num_codes, 1, filter_order);
free_matrix (code_lpc, 1, num_codes, 1, filter_order);
I/« Incorporate inverse filtering process/
output_signal=(float *)vector (1, num);
for (k=1;k<=seg_num;k++) {
for (i=1;i<=seg_len;i++) {
output_signal [(k—1)xseg_len+i] = error_signal[(k—1)xseg_len+i];
for (j=1;j<=filter_order;j++) {
/I« Generating output using excitation signal
and LPC coefficients from the codebook/
if (((k=1)xseg_len+i—j)>=1) {
output_signal [(k—1)xseg_len+i] —= codeword[k][j]+*output_signal [(k—1)xseg_len+i—j];
}
printf ("%d\n”, (int)output_signal [(k—1)xseg_len+i]);
}
}
free_vector(output_signal, 1, num);
free_matrix (codeword, 1, seg.num, 1, filter_order);
fclose(lpcfile);
fclose (cepsfile);
}
free_matrix (real_cep, 1, seg.num, 1, filter_order);
free_vector(error_signal, 1, num);
if (CODEBOOKS_EXIST==0) {
fclose(errfile);
}
if (CODEBOOKS_EXIST==0) {
fclose(gen_errfile);
December 12, 1996 EE-649 — Speech Processing

D33/46

434
435
436
437
438

© 0O ~NOO UL~ WN P

NP RPRRRRERRRERERR
QWO NOOUNWNERO

21
22
23
24
25
26
27
28
29

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt Chris Taylor and Varun Madhok

}

writeseed ();

return 0;

}

6.3 codeselect.c

/***

Authors: Varun Madhok and Chris Taylor

Date : December 6, 1996

File : codeselect.c

Purpose: This file contains the codeelect function which selects the
appropriate codebook for the speech being processed by the speech
compression application that was part of our fourth homework assignment
for EE649—-— Speech Processing

***/

#include <math.h>

void code_select(float =xxreal_cep, float *xcode_cep, float =xxcode_lpc, float *xcodeword,
int seg_num, int num_codes, int filter_order)

t
int i;
int k;
int j;
float err;

float emin;
for (k=1;k<=seg_-num;k++) {
emin = 9999999.9;
for (i=1;i<=num_codes;i++) {
err = 0.0;
I/« Measuring difference between the generated codeword and one from the
cepstral codebook/
for (j=1;j<=filter_order;j++) {
err += (double)fabs ((float)real_cep[k][]j] — (float)code_cep[i][]j]);

if (err<emin) {

December 12, 1996 EE-649 — Speech Processing

|:|34/46

30
31
32
33
34
35
36
37

© 00 ~NOoO Ul wN P

PR R R R R R
O UM WNEREO

© 0O ~NO O~ WN P

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g@rt

Chris Taylor and Varun Madhok

for (j=1;j<=filter_order;j++) {
codeword[k][j] = code_lpc[il[j];

¥

emin = err;

}
}
}
}

6.4 Wwr_error.c

/***

Authors: Varun Madhok and Chris Taylor

Date : December 6, 1996

File : wr_error.c

Purpose: This file contains the werror function which displays an error
message and exists if n=0.

***/

void wr_error(int n)

if (n==0)
{

printf ("ERROR.:%c_Aborting.and.exitting.\n”, 0x07);
exit(1);

else printf("Flag%d.: AIl .OK_...\n",n);
}

6.5 print_directions.c

/***

Authors: Varun Madhok and Chris Taylor

Date : December 6, 1996

File: print_directions.c

Purpose: This file contains the prindirections function which displays
usage instructions for the speech compression application that
was part of our fourth homework assignment for EE649 Speech
Processing

***/

December 12, 1996 EE-649 — Speech Processing

[B5/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

10 void print_directions ()

11 {
12 printf (”program..Usage:\n");
13 printf("coccocoeon —NUM e (S Number_of_records.in_testfile.\n");
14 printf(".oococoeoo | DI Nocooo ID.of_.segment_to.be_extracted .(enter.0.for_all)\n");
15 printf(”.oococoooo —bksize..n. .o Number.of.codes.(size.of)in_.the._.desired.codebook.\n");
16 printf(”coccoceooo —samp....Noceoo sampling_rate\n");
17 printf ("cecoooccon —in..oxcharo...in—filename\n");
18 printf("coccocoeon —out.oxcharooooout—filename\n");
19 printf("coccocoeoo —code_xchar....codebook_directory.to._be_used.in ./home/purcell/c/ee649/Data/p3/codebooks/\n");
20 printf (" ccceiicinniincnnnnnenng Valid .options._are.—>.male._(default)\n");
21 Printf (7 it ittt b bbb bbb bbb L L bbb G LG bbb G GG o female\n");
22 PNt (7 L e G e G b all_males\n");
23 PNt (7 L G G all_females\n");
24 printf("coccocoeon —segloceanoaea. segment.length\n");
25 printf("coococoeoao —group.xchar...group.name.to.decide.cepstrum.liftering .\n");
26 printf (" ccociiciiniininnnnnenng Valid .options._are.—>.0.o0r.o..(default);\n");
27 Printf (7 it ittt b bbb bbb bbb L L G bbb G LG bbb G GG o M.or.m...male;\n");
28 PNt (7 L e G e G Foor.f...female;\n");
29 PNt (7 b L G L G L G b GG G b G G G G Joorsjooochild. \n");
30 printf(”.coocoooas +Pciiiniinnno use.popen\n”);
31 printf(”.coocoooos 2\ P dont.classify.voiced/unvoiced\n");
32 printf (”"\nDESCRIPTION\n");
33 printf (”Default_.input_file ceoocoeoeo:n%s\n”, IN.DEF_FILE);
34 printf(”Default.codebook.dir........:.%s\n", CODE_DEFDIR);
35 printf(”Default.codebook.size:.%d\n", DEF_.CODEBK SIZE);
36 printf(”Default_.number_of_records...:.%d\n", DEF.DAT);
37 printf (" Default_segment_length:.%d\n", SEGMENTLENGTH);
38 printf(”Default.sampling.rate:.16000_.Hz\n");
39 printf(”Default._filter._order.......:.20\n");
40 exit(0);
41 }
6.6 unvoicederror _gen.c

1 /*********>1<>1<>.<>l<>l<>k>i<>i<>i<>i<************************>1<>1<>1<>l<>l<>i<>i<>i<>i<>i<************************
2 Authors: Varun Madhok and Chris Taylor
3 Date: December 6, 1996
4 File: unvoicederror.gen.c

December 12, 1996 EE-649 — Speech Processing D36/46

O© 00O NO UL WNPRP

e el el S S S T
No o~ WNRO

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

Purpose: This file contains the unvoicearror.gen function which generates

the voiced error signal for the speech compression application that

was part of our fourth homework assignment for EE649 Speech

Processing
***/

#include <math.h>
#include <stdio.h>
#include "hw4.h”
#include "Ihome/ offset/a/taylor/Src/Recipes/Vrecipes/randlib.h”
void unvoiced_error_gen(float «segment, int seg_len, float err_stdev)
t
int i;
/[« The unvoiced excitation signal is just white noise with the
desired variancex/
for (i=0; i<seg_len; i++) {
segment[i]=normal ()« err_stdev;
}

}
6.7 unvoicederror _gen.c

[sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk k sk sk sk sk sk sk sk kK sk ok sk sk sk sk sk sk sk ok sk sk sk ok sk ok sk sk sk sk ok ok sk ok ok sk ok
Authors: Varun Madhok and Chris Taylor

Date: December 6, 1996

File: voiced.error.gen.c

Purpose: This file contains the voicedrror.gen function which generates

the voiced error signal for the speech compression application that

was part of our fourth homework assignment for EE649 Speech
Processing
***/
#include <math.h>
#include <stdio.h>
#include "hw4.h”

#include "Ihome/ offset/a/taylor/Src/Recipes/Vrecipes/randlib.h”

void voiced_error_gen (float +segment, int seg_len, float err_stdev, int pitch_period)
{

float var;

float mult_factor;

December 12, 1996 EE-649 — Speech Processing

|:|37/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt Chris Taylor and Varun Madhok

18 float ftemp;
19 float const_factor;

20 int i;
21 int j;
22 int num_peaks;

23 var=err_stdevsxerr_stdev «(float)seg_len;
24 num_peaks=(int)((float)seg_len/(float)pitch_period);

25 mult_factor = 0.95xsqrt(var/(float) num_peaks);

26 const_factor=10.0;

27 j=0;

28 for (i=0; i<seg_len; i++) {

29 if (j<(int)pitch_period) {

30 ftemp=(float)j—(float)pitch_period/2.0; /« This assures that the peaks shall

31 occur near about pitclperiod /2.0 %/

32 I/« The sequence of pulses corresponding to the excitation signal for voiced speech
33 is generated using the function f(x) = ax/(1l4@x). A constant multiplicative

34 factor based on the standard deviation measured over the actual error signal is
35 used to modulate the signal to the appropriate amplitude.

36 White gaussian noise (pseudmandom) is added x/

37 segment[i]=err_stdev* normal()+sqrt(const_factor)xmult_factorxftemp/(1.0+const_factorxftempx«ftemp);
38 } else {

39 j=0; /x Once the count over the pitciperiod is exceeded, the counter is resét

40 segment[i]=0.0;

41 }

42 j+;

43 }

44 }

6.8 hamm.c

/***
Authors: Varun Madhok and Chris Taylor

Date: December 6, 1996

File : hamm. c

Purpose: This file contains the hamm function which applies a Hamming window
to the n sample signal for the speech compression application that
was part of our fourth homework assignment for EE649 Speech
Processing

***/

© 0O ~NO UL~ WN P

December 12, 1996 EE-649 — Speech Processing [sr46

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

O© 00N UL WN P

NRPRPRRRRERRRERERR
QWO NOOUNWNIERO

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

#include <math.h>
#define Pl 3.14159265

void hamm(float s[], float hs[], int n)

{
double omega;
double w;
int k;

omega=2xPl/(n-1);

for (k=0; k<n; k++) {
w =0.54 — 0.46 x cos(k x omega);
hs[k] = s[k] * w;
}
}

6.9 dhamm.c

[sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk Kk sk sk sk sk sk ok sk sk ok sk ok sk sk sk sk sk sk sk ok sk sk ok sk ok sk ok sk sk ok sk ok ok sk ook ok ok

Authors: Varun Madhok and Chris Taylor

Date: December 6, 1996

File: hamm. c

Purpose: This file contains the hamm function which applies a Hamming window
to the n sample signal for the speech compression application that
was part of our fourth homework assignment for EE649 Speech
Processing

***/

#include <math.h>

#define Pl 3.14159265

void dhamm(double s[], double hs[], int n)

{
double omega;
double w;
int k;

omega=2xPl/(n—-1);

December 12, 1996 EE-649 — Speech Processing

|:|39/46

21
22
23
24
25

© 0O ~NO O WN P

WWNNRNNMNNNMNNMNNNNRERRRERRRERRPR R
PO WO ~NOUWURWNRPRPOOWOWMNOUDWNLEO

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

for (k=0; k<n; k++) {
w =0.54 — 0.46 x cos(k x omega);
hs[k] = s[k] * w;
}
}

6.10 fftmag.c

/***

Authors: Varun Madhok and Chris Taylor

Date : December 6, 1996

File : fftmag.c

Purpose: This file contains the fftmag function and some helper functions
which calculate the magnitude (not log magnitude) of an n point
signal for the speech compression application that was part of
our fourth homework assignment for EE649- Speech Processing

***/

#include <stdio.h>

#include <math.h>

#define Pl 3.14159265

#define c_mag(cl) sqrt((cl.r)«(cl.r) + (cl.i)x(cl.i))

/[« A structure to hold a complex numbes/
typedef struct {

double r;

double i;
} COMPLEX;

[+ Authors: Varun Madhok and Chris Taylor

Date : December 6, 1996

Purpose: Returns the product of two complex numbers cl andx£2
COMPLEX c_mult (COMPLEX c1, COMPLEX c2)

{
COMPLEX c3;

c3.r=cl.rxc2.r — cl.ixc2.i;

c3.i=cl.i*c2.r + cl.rxc2.i;
return c3;

December 12, 1996 EE-649 — Speech Processing

|:|40/46

32
33
34
35
36
37
38

39
40
41
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

}

/« Authors: Varun Madhok and Chris Taylor

Date : December 6, 1996

Purpose: Returns the sum of two complex numbers cl andx¢£2
COMPLEX c_add (COMPLEX c1, COMPLEX c2)

{
You should just put the function prototypes up here and put do the
Implemetation after fftmag since fftmag is the function of interest in
this source file.
COMPLEX c3;
c3.r=cl.r + c2.r;
c3.i=cl.i + c2.i;
return c3;
}
[+ Authors: Varun Madhok and Chris Taylor
Date : December 6, 1996

Purpose: Returns the difference of two complex numbers cl and«k2
COMPLEX c_sub (COMPLEX c1, COMPLEX c2)

{
COMPLEX c3;
c3.r=cl.r — c2.r;
c3.i=cl.i — c2.i;
return c3;
}
[+ Authors: Varun Madhok and Chris Taylor
Date : December 6, 1996

Reference: Steiglitz, Introduction to Discrete Systems$
int fftmag (double s[], double mag[], int n)

{

December 12, 1996 EE-649 — Speech Processing

[:]41L46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab gilrt Chris Taylor and Varun Madhok

63 int i;
64 int j;
65 int m;
66 int l;

67 int length;

68 int locl;

69 int loc2;

70 double arg;

71 double w;

72 COMPLEX c;

73 COMPLEX z;

74 COMPLEX f[1024];

75

76 for (i=0; i<n; i++) {

77 j=0;

78 for (m=1; mxn; m +=m) {

79 if (i % (mm) >=m)

80 j += n/(m+m);

81 }

82 flil.r=s[j1;

83 fl[i].i=0;

84 }

85

86 for (length=2; length <= n; length += length) {
87 w = —2.0xPIl/(double)length;
88 for (j=0; j<n; j += length) {
89 for (1=0; I<length/2; I++) {
90 locl=1+j;

91 loc2=locl+length/2;

92 arg=wsx | ;

93 c.r=cos(arg);

94 c.i=sin(arg);

95 z=c_mult(c,f[loc2]);

96 f[loc2]=c_sub(f[locl],z);
97 f[locl]=c._add(f[locl],z);
98 }

99 }

100 }

101

December 12, 1996 EE-649 — Speech Processing WZLE

102
103
104
105

© 0O ~NO O WN P

WNNNNNNNMNNNNRPRRPRERRERRRRR
OCOOXMNOUNEWNRLROOO®NOOUNMOWNEREO

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

for (i=0; i<n; i++) {
mag[i] = cmag(f[i]);
}
}

6.11 Ipc.c

/***
Authors: Varun Madhok and Chris Taylor
Date : December 6, 1996
File : Ipc.c
Purpose: This file contains the Ipc function which calculates the LPC
coefficients that approximate the signal x. The function is
used by the speech compression application that was part of
our fourth homework assignment for EE649- Speech Processing
***/

#include <stdio.h>
#include <math.h>

#define MAXLPC_ORDER 40
#define EVEN(x) !(x%2)

int Ipc(float x[], int n, int p, float b[], float * rmse, float =« errn)
{ .

int i;

int k;

float reflect_coef [MAXLPC ORDER+1];

float auto_coef[MAXLPC ORDER+1];

float sum;

float templ,temp2;

float current_reflect_coef;

float pred_error;

for (i=0; i<=p; i++){
sum = 0.0;

for (k=0; k< n—i; k++) {

December 12, 1996 EE-649 — Speech Processing

|:|43/46

31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt Chris Taylor and Varun Madhok

sum += (x[k] * x[k+i]);

}

auto_coef[i] = sum;

}

xrmse = auto_coef[0];

if (xrmse == 0.0) {
return 1; /x Zero power. x/

}

Having multiple return

fied in the future.

You should only have one return statement for each function.
statements makes your function more vul-
nerable to defects being introduced into your code when it is modi-

pred_error = auto_coef[0];
b[0] = 1.0;

for (k=1; k<=p; k++) {
sum = 0.0;

for (i=0; i<k; i++) {
sum += b[i] * auto_coef[k—i];

}

current_reflect_coef = —sum/pred_error;
reflect_coef[k] = current_reflect_coef;

b[k] = current_reflect_coef;

for (i=1; i <= (k=1)/2; i++) {
templ b[i];
temp2 = b[k—i];

December 12, 1996

EE-649 — Speech Processing

|:|44/46

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

b[i] += current_reflect_coef x temp2;
b[k—i] += current_reflect_coef *x templ;

}

if (EVEN(K)) {

}

b[k/2] += current_reflect_coef % b[k/2];

pred_error x= (1.0 — current_reflect_coef x current_reflect_coef);

if (pred_error <= 0.0) {
/* Non—-positive prediction errorx/

return 2;

}
}

xerrn = pred_error;
return 0;

}

December 12, 1996

/+ Normal

return x/

EE-649 — Speech Processing

D45/46

Lab 4: Speech Compression via Linear Predictive Coding — Sample lab g%rt

Chris Taylor and Varun Madhok

Score

Assignment Grade Summary

Category

30/30

Meeting specifications

15/20

Technical quality

29/30

Narrative report

5/5

Internal documentation (comments)

0/7

Activity log

3/3

Submission procedure

4/5

Spelling and grammar

86/100

Assignment Grade

December 12, 1996

EE-649 — Speech Processing

[heia6

	Introduction
	Design Process
	Vocal Tract
	Excitation

	Discussion
	Additional Notes
	Bibliography
	Source Files
	hw4.h
	hw4.c
	code_select.c
	wr_error.c
	print_directions.c
	unvoiced_error_gen.c
	unvoiced_error_gen.c
	hamm.c
	dhamm.c
	fftmag.c
	lpc.c

