SE-1010 Software Development 1

Integers (Part 2)

Dr. Walter W. Schilling, Jr.
Instructor

Homework

- 7-30, 7-33

O

Minute Quiz

- Four integer-like data types within Java are byte, short , int , and long
- A short integer data type requires 16 bits to store a value.
- The $\%$ operator performs a remifer operation.
(modoviva)
- Overflow occurs if two large numbers are added together, exceeding the capacity of the data type. (Rollover)

Precedence

- Is this 20 or 14?
$20 \mathrm{~h} /{ }_{15} \mathrm{t}$

M

- Rule 1:

3 Precedence Rules to war ry a bot - (Hist: More will be coming hay
wide d.) $-\{*, /, \%\}$ are performed before $\{+,-\}$.

- Rule 2:
- When two operators have equal precedence, the leftmost one is performed first.
- Rule 3:
- An expression inside parentheses is evaluated on its own before being used by operands outside the parentheses.

Best Practice

- If you are in doubt about precedence, always explicitly parenthesize your source code.
- Won't hurt if you do not need them
-But,
- May avoid a costly bug if you are wrong in interpreting precedence.

Reading ins from Strings

- We can parse a String for an integer value C using the Integer.parseInt routine.
- Problem solving example...

- Lets calculate the perimeter of a triangle by adding the three sides together.
-3 sides are to be added on the same line separated by spaces.

Java Also Provides

- Byte.parseByte(String) - 128 to +127
- Short.parseShort(String) - 32768 to 32767
- Long.parseLong(String) -2^{63} to 2^{63}

Converting ints to Strings

- What you want to do:

- "1 \% 4d $\backslash n$ " is a control string $6 / 6 / 10^{10}$
- \%4d means right-aligned in a field of width 4
- After the control string come the variables to print.

Problem Solving

- The egg crate problem
- Create a class which
-1 . Stores the number of eggs in a warehouse
- 2. Can compute the number of gross (144) eggs within the warehouse, the number of dozen in the warehouse, and the remaining single eggs.

Format specifies

- \%d signed int signed decimal integer - Mast common
- \%o unsigned int unsigned octal integer - $\sigma_{\text {L }}$ M Number Cbas
- \%x, \%x unsigned int unsigned hexadecimal integer, lowercase or Nuaber) uppercase - Hex ol $53 B A$
- \%ffloat real number, standard notation \%e,
- \%E floart'real number, scientific notation (lowercase or uppercase expopent marker) \%g,
- $\% \mathrm{G}$ float same format as \%f or \%e, depending on the value.

Scientific notation is used only if the exponent is greater than the precision or less than -

- \%s String string
- \%c char character

String.format

- Similar to printf, except that instead o printing, a string is returned.
- String.format("The square of\%3d is\%4d.",
$25,625)$
- Returns
-"The square of 25 is 625."

Recommended Reading

- We didn't get to it in class, but
- READ SECTION 7.10 and 7.11
- Excellent example of problem solving with integers and complex numbers.

